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Human-induced climate change, dominated by warming

trends, poses a major threat to global biodiversity and

ecosystem functioning. Species interactions relay the direct

and indirect effects of climate warming on individuals to

communities, and detailed understanding across these levels is

crucial to predict ecological consequences of climate change.

We provide a conceptual framework that links temperature

effects on insect physiology and behaviour to altered species

interactions and community dynamics. We highlight key

features of this framework with recent studies investigating the

impacts of warming climate on insects and other ectotherms

and identify methodological, taxonomic and geographic

biases. While the effects of increased constant temperatures

are now well understood, future studies should focus on

temperature variation, interactions with other stressors and

cross-system comparisons.
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Introduction
Human activities induce a rapid climate change that

poses a major threat to global biodiversity and ecosystem
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functioning [1]. Increasing and more variable tempera-

tures that dominate future climate scenarios will affect all

biota on Earth including insects, the most diverse and

abundant group of terrestrial animals, which provides key

ecosystem services such as pollination [2,3]. Understand-

ing how temperature effects on individuals scale up to

communities is thus crucial to assess and predict the

ecological consequences of climate change.

Altered temperature regimes can affect individuals, popu-

lations and communities directly and indirectly in multi-

ple ways (Figure 1). Temperature directly alters metabo-

lism and other physiological rates [4], modifying

behavioural and life history traits of individuals [5,6]

(Figure 1, arrows 1 and 2). These direct effects translate

into altered species interactions (Figure 1, arrows 4 and 5),

which in turn determine community structure and

dynamics [7��,8�,9�] (Figure 1, arrow 6) and provide

ecological and evolutionary feedbacks on the individuals

(grey arrows in Figure 1). We review recent evidence for

this conceptual framework in insects with emphasis on

species interactions, as both modelling [10] and experi-

mental studies [11,12] show that trophic interactions

modulate the strength of warming effects on individuals

and communities. We omit related topics covered

elsewhere in this issue: mismatches in predator and prey

phenologies [13��,14] and evolutionary and plastic

responses to climate change [15,16].

Recent advances: from individuals to species
interactions
Kinetic effects of warming on individuals

Environmental temperature directly underpins insect phys-

iology and behaviour (Figure 1, arrow 1). Warming increases

the kinetic energy of biochemical reactions, speeding up the

rate of physiological processes to a maximum at an optimal

temperature above which performance declines steeply

[17]. Belowthe optimal temperature,warming leads to faster

development (e.g. Refs. [18–20]) that often outpaces body

growth and leads to smaller adult body sizes at warmer

temperatures ([21], see below). More rapid development,

fuelled by a faster metabolism (e.g. Ref. [22]), increases

individual energetic demands and typically translates into

higher feeding rates [23,24��]. Higher feeding rates at higher

temperatures can be driven by faster locomotion rates, more

frequent encounters between individuals [25], or faster prey

capture [26] (Figure 1, arrow 4).
www.sciencedirect.com
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Overview of the conceptual framework linking direct effects of warming on individuals (arrows 1 and 2) to species interactions (arrows 4 and 5)

and communities (arrow 6). We distinguish the immediate kinetic effects of temperature on biological rates of individuals and the lagged effects on

individual behaviour and lagged shifts in species range, phenology and body size that are driven by temperature directly and indirectly through its

kinetic effects (arrow 3). Warming-induced changes in community structure and dynamics and in species interactions also feedback on individuals

(grey arrows).
This body of evidence corroborates previous studies

showing that warming strengthens plant–herbivore inter-

actions [24��,27] and predator–prey interactions

[22,28,29] (but see Ref. [26]) including intraguild preda-

tion [30] and cannibalism [31] in various insect groups.

However, warming can also decrease the impact of pred-

atory insects on prey populations. Energetic demands

typically increase faster with temperature than feeding

rates [24��,32�,33] which, in the long-term, can lead to

starvation, prolonged development [18] and population

extinctions, particularly at higher trophic levels [34,35].

Such a loss of top-down control may partly explain the

growing impact of insect pests on crop yields with climate

change [36,37].

Beyond kinetics: integrated behaviours

In addition to short-term kinetic effects, warming

imposes mid-term lagged effects on insect behaviour,

phenology and phenotypic traits (Figure 1, arrows

2 and 3). Many insects can sense temperature and actively

modify their behaviour [38��]. These ‘integrated beha-

vioural effects’ include behavioural thermoregulation,

thermal orientation and thermosensory behavioural

adjustments (i.e. use of integrated thermal information

to modify behaviours [38��]). While insects are likely to

display one or more of these integrated responses to
www.sciencedirect.com 
warming, few studies assessed their implications for spe-

cies interactions (Figure 1, arrow 5). For instance, the egg

parasitoid Trichogramma euproctidis modulates offspring

sex-ratio allocation, increasing the proportion of males at

high and low temperatures [39]. This altered sex-ratio

could affect the population dynamics of the parasitoid and

feedback on the host population [40].

Temperature also influences diet selection in insects and

other ectotherms [7��,41–44] (Figure 1, arrows 2 and 3).

Two hypotheses currently link temperature, diet selec-

tion and food quality (i.e. C:N:P ratios). Under the

‘growth rate hypothesis’ [45], warming increases demand

for phosphorus, fuelled by increased growth rates [46,47];

and for nitrogen, owing to increased protein denaturation

and turnover rates [48]. Under the ‘respiration

hypothesis’, warming increases demand for carbon over

phosphorus or nitrogen, as respiration increases faster

than growth with temperature [49�]. Despite the mixed

results of experiments investigating the thermal effects

on diet selection [7��,41,44] and the lack of consensus on

the underlying mechanisms, both hypotheses highlight

the potential for warming-induced shifts in trophic inter-

actions in ectotherm communities. Such shifts could alter

the structure and stability of ectotherm-dominated food

webs (e.g. in freshwaters); recent modelling studies
Current Opinion in Insect Science 2019, 35:88–95
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demonstrated that prey quality can influence food web

dynamics [50] and that warming-related extinctions are

driven mainly by the indirect effects of temperature on

trophic links, rather than by its direct effects on individual

physiology [51].

Beyond kinetics, three lagged responses: shifts in

species range, phenology and body size

Climate change can influence species’ phenotypes and

spatial distribution through plastic or selective processes,

leading to shifts in geographical ranges, phenology, and

individual body sizes [2,52] (Figure 1, arrows 2 and 3).

Even though these responses are lagged, they have

important consequences for species interactions

[22,24��] (Figure 1, arrow 5, and Figure 2).

The distributional ranges of many European butterflies

shifted northwards by 35–240 km during the 20th century

in response to climate change [53], although some species

also shifted southwards in Britain [54]. Similarly high

variation in species-specific distributional range shifts,

attributable to delayed species responses, differences in

physiological constraints and alternative drivers of change,

was reported in British ground beetles and grasshoppers

[54]. These species-specific rates and extents of distribu-

tional range shifts may induce spatial mismatches in inter-

acting species and disrupt current ecosystem processes, but

this phenomenon is poorly understood [55].

Warming also influences the phenology of insects and

their host plants. The green cover period lengthens by

3–4 days per decade due to advancing spring events and

delayed leaf fall in autumn [56]. These phenological

changes may lead to temporal mismatches between spe-

cies and alter trophic and mutualistic interactions [13��],
covered elsewhere in this issue [14].

Finally, ectotherm body sizes vary systematically within

and between species with temperature [52,57��,58].
Decreasing body sizes with warming, known as the tem-

perature-size rule [57��], are common in insects, and

documented long-term trends in body size have been

linked to climate change [58]. The magnitude of body

size change with temperature varies among insect taxa

and habitats, with stronger size reductions in aquatic

species and weaker or even reversed responses in terres-

trial ones [59–61]. Absolute and relative consumer-

resource body sizes are key determinants of trophic

interaction strengths and food web structure. Warming

may thus indirectly alter predator–prey size ratios and

modify species interactions and community dynamics

[62,63] (Figure 1, arrows 5 and 6, and Figure 2). As aquatic

food webs are more strongly size-structured than terres-

trial ones, the ecological consequences of body size

reductions are predicted to be stronger in aquatic than

in terrestrial systems [8�].
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Summary of current evidence

Temperature strongly influences the kinetic energy of

biochemical reactions, which scales up to affect insect

physiology, behaviour and interactions. Temperature can

also induce lagged effects on the behaviour, spatial dis-

tribution, phenology and phenotypic traits of insect spe-

cies. These can modulate the extent of the kinetic effects

of temperature on insects as described above (Figure 1,

arrows 1–3). While both the kinetic and lagged effects of

warming are likely to be important for insects, as well as

their interactions, most studies focused on the kinetic

effects of temperature.

Recent advances: from species interactions
to community dynamics
Importance of species interactions for population and

communities in a warming world

Species interactions are important for ecosystem stability

and resilience to warming (Figure 1, arrow 6, and Figure 3).

For example, impacts of herbivory on plant distribution can

modify plant responses to climate change [10], as plant–

herbivore interactions can mediate the transition between

dominant vegetation types at higher temperatures [10]. On

the contrary, host–parasitoid interactions were found to

alleviate the negative effects of heat shocks on aphid

survival [12], suggesting that community complexity

may buffer the negative effects of warming on individuals

and populations as proposed in Ref. [11]. Even though

trophic complexity may shield populations and communi-

ties, warming is likely to reduce this complexity and lead to

cascading effects. The persisting species in altered com-

munities may experience stronger negative effects of

warming, that may further accelerate their decline [11]

and increase the likelihood of regime shifts.

Effects of warming on community structure

Warming leads to long-term changes in ecological com-

munities (Figure 3). For example, Floury et al. [64] found

warming to increase functional diversity of invertebrates

in streams and rivers across France. Long-term data on

European freshwater communities show that vulnerabil-

ity varies across functional groups, and species composi-

tion tends to shift towards generalist and tolerant species

that often are or become invasive [64,65].

Community structure and food webs can be further

modified by phenology mismatches, distribution range

shifts and altered species interactions induced by warm-

ing ([14], arrow 6 in Figure 1, and Figure 2). Current

theory predicts that warming-induced impacts on com-

munity structure and dynamics, owing to altered species

interactions, depend on both direct and indirect thermal

effects [9�]. Warming-induced changes in species compo-

sition or abundance can have cascading effects on other

trophic levels [65]. For instance, Lister and Garcia [66]

showed that climate warming decreased the abundance of
www.sciencedirect.com
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Figure 2
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Examples of the consequences of the three main lagged responses to warming for species interactions: changes in phenology (left panel),

distribution (middle) and body size (right); all of which can substantially alter species interactions. While changes in phenology and distributional

areas are better understood in terrestrial ecosystems, the effects of changing body size are particularly important for aquatic habitats. Trophic link

strength (right panel) indicated by arrow width; relative population sizes indicated by numbers of individuals.
forest arthropods, leading to a restructuring of the tropical

forest food web in Puerto Rico.

Asymmetric behavioural responses of predators and her-

bivores to warming can also affect trophic interactions,

with potential cascading effects on local plant communi-

ties. A long-term mesocosm experiment using Pisuarina
mira spiders (predator) and Melanoplus femurrubrum grass-

hoppers (prey) showed that, depending on the time of the

day, warming can either weaken or strengthen a trophic

cascade as spiders seek thermal refuge or become more

active, with knock-on effects on grasshopper grazing

pressure [67]. A field transplant experiment with five

coupled populations of these two species found that

the spiders selected cooler sites than the grasshoppers,

which were less sensitive to warming. This led to reduced

top-down control and higher grazing pressure, which in

turn altered plant community composition [68].

Effects of warming on community stability

Beside structural changes, temperature-driven changes in

consumer phenotypes at different trophic levels may lead

to stabilizing or destabilizing cascading effects on com-

munities (Figure 1, arrows 4–6). Decrease in stability is
www.sciencedirect.com 
often predicted, as responses to warming vary across

trophic levels [25,69,70] and thermal sensitivity varies

substantially within and among species [71,72]. Plant–

herbivore interactions can also influence ecosystem resil-

ience, increasing the rate of short-term responses of the

vegetation to climate change (initial resilience) and

reducing the long-term rate at which equilibrium is

restored (asymptotic resilience) [10].

The generally greater thermal sensitivity of parasitoids,

compared to their hosts, suggests that warming may

disrupt the synchrony of host–parasitoid interactions

[73] and lead to increased host abundance and fluctua-

tions (e.g. in aphid–parasitoid interactions [74]). How-

ever, sensitivity does not always change monotonically

with trophic level or body size, with potential implications

for multi-trophic systems. For example, the critical ther-

mal maximum (CTmax) of the parasitoid wasp Cotesia
congregata is substantially lower than in both its host

caterpillar Manduca sexta and its own parasitoid wasp

Conura sp. [71]. Similarly, a study on ant–hemipteran–

plant communities showed that plant growth and ant

activity increased with temperature, while the hemip-

teran growth, abundance and size decreased [75].
Current Opinion in Insect Science 2019, 35:88–95
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Figure 3

Trophic chain

w
ar

m
in

g

Food web

Current Opinion in Insect Science 

Warming impacts community structure and dynamics through its effects on species interactions (solid lines; both trophic and non-trophic) and

dispersal (dotted line). Typical responses include top predator losses that can trigger trophic cascades or change ecosystem stability, especially in

simple communities (left panel). Arrival of more tolerant and often invasive species can rewire the entire food web (right panel). Community and

food web complexity may buffer against these changes, owing to functional redundancy and multiple interactions (left versus right panel).

Interaction strength indicated by arrow width; relative population size indicated by number of individuals.
Effects of warming on dispersal and metacommunity

dynamics

Along with species interactions, warming can alter species

dispersal [76], but their combined effects remain poorly

explored. Temperature affects dispersal rates directly by

changing body size, behaviour and phenotypes (Figure 1,

arrow 1), or indirectly by prompting dispersal away from

low-quality resource patches [77] (Figure 1, arrow 6). For

instance, Wang et al. [78] found that warming reduces the

proportion of winged aphids, in turn altering their top-

down control by ladybeetle predators. Warming may also

affect arrival times and priority effects, leading to signifi-

cant changes in communities and metacommunities,

since early arrival offers competitive advantage [76].

Increased connectivity observed in metacommunity

experiments suggests that higher dispersal rates may

counter biodiversity loss resulting from warming [79].

Dispersal decisions depend on the quantity and quality of

local resources. Grainger and Gilbert [77] showed that, in

the absence of resource limitations, warming did not

affect dispersal and benefitted herbivore insects by

increasing population size. Under resource limitations,

increased dispersal rates and declines in insect popula-

tions are expected [77]. This suggests context-dependent

effects of warming on dispersal rates, modulated by
Current Opinion in Insect Science 2019, 35:88–95 
resource availability and competitive interactions. Alto-

gether, these results imply that climate warming will

trigger restructuring of insect communities, but more

studies are needed to determine the frequency and

magnitude of these structural changes.

Summary of current evidence

Temperature-induced changes in species abundance,

interactions and dispersal directly or indirectly impact

community structure and ecosystem functioning. Evi-

dence is mounting that warming will restructure commu-

nities. The various context-dependent warming effects

on communities are also reliant on the system complexity

and, therefore, difficult to disentangle. However, despite

the inherent challenges, studies at higher levels of orga-

nisation will be critical to understand warming effects on

biodiversity.

Future directions
Given the unpredictable nature of climate change over

long timescales, robust predictions of climate change

impact on species interactions and their consequences

for community structure and dynamics remain elusive.

While the effects of increased constant temperatures

are now reasonably well understood, we argue that

future studies should focus on temperature variation,
www.sciencedirect.com
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interactions with other stressors and comparisons across a

wider range of taxa and systems.

In addition to warming, natural populations also experience

predictable seasonalanddailyvariation, stochastic variation

and extreme temperatures (e.g. ‘heat waves’), which are

projected to increase with climate change [80,81]. A recent

review showed that thermal performance curves may be

used to predict the effects of daily variation and heat waves

on species interactions [82�], but data on many groups and

community-level consequences are lacking.

Little is known about the interacting effects of tempera-

ture with other abiotic (e.g. pollution, eutrophication and

droughts) [65] and biotic stressors (e.g. invasive species).

Such interactions increase the risk of cascading effects

and may strongly impact ecosystem diversity and func-

tioning. For example, warming may accentuate drought

and increased rainfall effects on the fitness of herbivorous

insects and their predators by modulating food quality

and predator–prey interactions [83,84]. In aquatic com-

munities, warming and altered rainfall can have opposite

effects on different functional groups [65]. Changes in

rainfall are particularly important in small water bodies

such as tank bromeliads, in which they disrupt trophic

relationships [85]. Furthermore, warming may remove

or weaken environmental barriers and thus facilitate

the expansion of invasive, often cold-limited species

(Figure 3), and change the nature of their impacts [34].

Despite recent advances, we also lack data on the effects of

warming in many taxa and ecosystems, and have to rely on

generalizations. Among terrestrial insects, current knowl-

edge derives from several model tritrophic systems such as

plant–aphid–parasitoid and plant–grasshopper–spider sys-

tems. Among aquatic insects, warming effects are best

understood in larval odonates. Future work should encom-

pass underrepresented taxa, such as wood-boring insects or

aquatic insects breathing atmospheric oxygen.

Moreover, current research carries a temperate zone bias

[86], although changes in trophic interactions driven by

climate change are particularly relevant for Arctic and

tropical regions. The Artic will experience the highest rates

of temperature increase, with potentially high increases in

invertebrate herbivory [27]. Tropical arthropods, due to

their lower thermal tolerance, are highly vulnerable to

climate warming [87] that has been identified as the main

driver of arthropod abundance declines in a Neotropical

rainforest, with strong impacts on higher trophic levels [66].

Finally, short-term effects of warming on thekinetic effects

and trophic interactions (Figure 1, arrows 1 and 4) are much

better understood and supported by theory [4,25]. Consid-

erably less is known (but see Ref. [67]) about how changes

in species interactions, measured over hourly to daily time-

scales, translate into long-term, multi-generational changes
www.sciencedirect.com 
in complex communities (Figure 1, arrow 6). To this end,

studies on thermal effects should also look beyond trophic

interactions and investigate other interaction types such as

non-trophic interactions or habitat provisioning [28].
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Appenzeller C: The role of increasing temperature variability in
European summer heatwaves. Nature 2004, 427:332-336.

81. Donat MG, Alexander LV: The shifting probability distribution of
global daytime and night-time temperatures. Geophys Res Lett
2012, 39:L14707.

82.
�

Stoks R, Verheyen J, Van Dievel M, Tüzün N: Daily temperature
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